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SUMMARY 

To make the best use of narrowband airborne visiblelinfrared imaging spectrometer (AVIRIS) 
data, an investigator needs to know the ratio of signal to random variability or "noise" (signal-to-noise 
ratio or SNR). The signal is land cover dependent and varies with both wavelength and atmospheric 
absorption and random noise comprises sensor noise and intrapixel variability (Le., variability within a 
pixel). The three existing methods for estimating the SNR are inadequate, since typical "laboratory" 
methods inflate while "dark current" and "image" methods deflate the SNR. 

We propose a new procedure called the "geostatistical" method. It is based on the removal of 
periodic noise by "notch filtering" in the frequency domain and the isolation of sensor noise and intrapixel 
variability using the semi-variogram. This procedure was applied easily and successfully to five sets of 
AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband 
sensors. 

1. INTRODUCTION 

Optical remote sensing has traditionally relied on the use of imaging sensors, with a few spectrally 
noncontiguous broad wavebands, to characterize the major peaks and troughs of an object's reflectance 
spectrum. Such sensors cannot record the diagnostic narrow waveband absorption features that are the 
basis of identification in laboratory-based spectroscopy. This has led to the development of the imaging 
spectrometer which registers many narrow waveband images of a scene and enables the creation of a con- 
tiguous reflectance spectrum for each pixel in that scene [I], [2]. Leadership in imaging spectrometry for 
civil environmental applications has been provided by NASA's Jet Propulsion Laboratory (JPL). Their 
first sensor, the airborne imaging spectrometer (AIS), could sense in 128 near-infrared wavebands with a 
365 to 787 m swath and was operational from 1984 to 1986 inclusive [3]. Their second sensor, the air- 
borne visible/infrared imaging spectrometer (AVIRIS) effectively senses in 209 visible and near-infrared 
wavebands with an 11-km swath [4]-[6]. AVIRIS underwent performance evaluation flights in 1987 [7] 
and 1988 and will be flying operationally from 1989 onwards. 

To optimize the use of AVIRIS data the random variability or "noise" associated with the sensor's 
signal should be measured. This information is required by every investigator, as noise determines the 
accuracy with which absorption features can be distinguished in the spectra [8] and objects can be detected 
on the ground [9]. For instance, an investigator wishing to use AVIRIS data to estimate the biochemical 
composition of a vegetation canopy will be looking for diagnostic absorption features at a range of wave- 
lengths, including 1.69 pm for lignin, 2.10 pm for starch,and 2.18 pm for protein [lo]-[12]. The detec- 
tion of an absorption feature requires a level of noise that is around an order of magnitude smaller than the 
absorption depth [8]. Therefore, information on noise is required with each spectrum, if only to determine 
if detection of a particular absorption feature is possible. Infomiation on noise alone is not very useful, as 
a given level of noise will have a more deleterious effect on data quality if the signal is low. Therefore, the 
signal-to-noise ratio (SNR) which can be estimated by the ratio of the signal's mean (2) to its standard 
deviation (s), will be used here (Table I). 
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The major part of the noise in the AVIRIS signal is additive to a signal [ 131 that decreases sharply 
with both an increase in wavelength and atmospheric absorption [14], [ 151. The aim of the work reported 
here was to develop a procedure for estimating this wavelength-dependent SNR. 

11. ESTIMATING THE SNR OF AVIRIS DATA 

AVIRIS data contain periodic (coherent) sensor noise that can be removed and random noise that 
cannot. The noise of relevance to the investigator is random noise: the random sensor noise, which is 
image independent, and intrapixel variability, which is a result of spatially heterogeneous pixel contents 
and is image dependent. Unfortunately, the three methods commonly used to estimate the S N R  of 
remotely sensed imagery (termed for convenience "laboratory," "dark current" and "image") do not isolate 
this random noise for the investigator (Table I). 

A typical laboratory method uses the Z and s of a bright homogeneous surface to estimate the 
S N R  for only a few wavebands. The presence of periodic noise will decrease the measured S N R  below 
that relevant to the investigator (see above) but this is more than compensated for by the omission of 
intrapixel variability and more importantly, by the use of an artificially high signal. When using a labora- 
tory method with a homogeneous surface having a 50% albedo, SNRs of 130,88,34, and 18 were 
reported for AVIRIS wavebands centered at 0.7 pm, 1.0 pm, 1.6 pm, and 2.2 pm respectively [16], 
[17]. A typical "dark current" method uses variation (e.g., s) in the signal dark currents as a measure of 
noise. It is not a widely used method although it has been applied to AVIRIS data [18], [19]. Unfortu- 
nately, the resultant value includes periodic noise which deflates the S N R  below a level which is relevant 
to the investigator. A typical "image" method uses the 2 and s of four, or more, visually homogeneous 
pixels as an estimate of the SNR [20], [21]. The resultant value is also deflated below that which is rele- 
vant to the investigator, for it includes periodic noise and interpixel variability [22], [23], which even on a 
visually homogeneous area can be around 2% of 2 [24]. 

the "geostatistical" method. 
To estimate the S N R  of the investigator's data a new procedure is proposed which we have termed 

111. THE GEOSTATISTICAL METHOD FOR ESTIMATING THE SNR 

Following the removal of periodic noise, random noise must be estimated free of interpixel vari- 
ability (Table I). We therefore require an estimate of variability at a pixel; a tool to do this is the semi- 
variogram [25 ] .  This is produced from a transect of pixels where the signal z, at pixel number x :,long 
the transect has been extracted at x = 1,2, ..., n. The relation between a pair of pixels, h pixels apart 
(the lag distance) can be given by the variance of the differences between all such pairs (Glossary). The 
semi-variance y(h), for pixels at distance h apart is given by half their expectation (E) squared 
difference, as is discussed by Webster [26], 

Within the transect there will be m pairs of observations separated by the same lag, which is estimated by 
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- 
S 2  is an unbiased estimate of the semi-variance, y(h), in the PO dation [26] and is a useful measure of the 

pixels will be. The semi-variogram is the function that relates semi-variance to lag (Fig. 1) and is 
described by Webster [26] and Jupp et al. [27]. Three aspects of the semi-variogram are of interest here: 
the sill, the asymptotic upperbound value of y(h); the nugget variance (C,), the limit of y(h) when h 
approaches 0; and the spatially dependent structural variance (C), the sill minus nugget variance. By defi- 
nition y(h) = 0 when h = 0 [28]. In practice the limit of y(h) when h approaches 0 has a positive value 
because the nugget variance represents variability at scales smaller than a pixel. This phenomenon is a 
characteristic of the "regularized" semi-variogram calculated for plot rather than point data and is discussed 
further by Journel and Huijbregts [28]. 

difference between spatially separate pixels [27]. The larger -f S is and therefore y(h), the less similar the 

The key argument upon which the geostatistical method is based is that the nugget variance 
(Fig. 1) is a sound estimate of the spatially independent noise variance relevant to the investigator. This 
argument is intuitively acceptable as at the limit of y(h), when h approaches 0, the nugget variance does 
not have a spatial component (Fig. 1) and is comprised almost entirely of random sensor noise and 
intrapixel variability. The statistical justification for this argument requires consideration of a one- 
dimensional model where x is a continuous parameter giving location along a linear transect. The 
observed signal z(x), comprises both radiance r(x) (assumed to be stationary) and noise n(x) (assumed 
to be stationary, uncorrelated with r(x) and not autocorrelated): 

z(x) = r(x) + n(x) . (3) 

Then, by definition, the expectation E of the squared difference between the signals of two points at a lag 
of h is the semi-variance y(h) (presented here without the division by two or subscripts for clarity), 

y[z(h)] = E[z(x) - Z(X + h)I2 . (4) 

The semi-variance is a function only of sampling lag h if z(x) is stationary, being a sum of two station- 
ary functions. Substituting equation (3) into equation (4): 

E[z(x) - z(x+h)]2 = E[r(x) + n(x) - r(x + h) - n(x + h)I2 
= E[r(x) - r(x+h)] + E[n(x) - n(x+h)] 

- 2E[(r(x) - r(x + h))(n(x) - n(x + h))] . ( 5 )  

As E[(r(x) - r(x + h))(n(x) - n(x + h))] = 0, due to the lack of correlation between radiance and noise, the 
final term in equation ( 5 )  drops out. By definition of the semi-variance: 

where y[r(h)] and y[n(h)] are the semi-variances of the radiance and noise, res ectively. If both the radi- 
ance and noise are stationary, they can be written in terms of their variances or, on and autocorrelation 
functions p,(h), pn(h) [29]: 

$ 2  

y[n(h)l = o;[l - pn(h)l * (8) 

If noise is not autocorrelated, Pn(h) = 1 for h = 0 and pn(h) = 0 for h > 0. Therefore, 
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y[n(h)] = CY', for h > O  

= O  f o r h = O .  

Taking the limits of equation (9) for the three semi-variances: 

(9) 

limit rIz(h)] = limit y[r(h)] + limit 'yln(h)] 
(h+O) ( h - m  (h 4 

= limit cf [ l  - p,(h)] + 0: . 

(h+O) 

If r(x) were not autocorrelated, the radiance variance cf would, when the limit of the semi-variance 
was h + 0, contaminate the estimate of the noise variance 0;: 

2 2  I 
(1 1) limit y[z(h)] = or + on . 

However, in practice r(x) is highly autocorrelated for small lags due to the point-spread function of the 
sensor. Therefore, the contribution of the term containing or is very small in relation to on and the 
semi-variance of the radiance y[z(h)] at the limit is nearly equal to the noise variance 4, 

2 2 

2 limit y[z(h)] = 0, . 
(h-0) 

Accepting equation (12), the square root of the nugget variance can be used to estimate the standard devia- 
tion of the random noise and intrapixel variability and thereby the S N R  of AVIRIS data, 

and as Z and <G have wavelength dependence [25], [30], this calculation should be made for each 
waveband sensed by AVIRIS. 

IV. ASSUMPTIONS IN THE USE OF THE GEOSTATISTICAL 
METHOD FOR ESTIMATING THE SNR 

The two assumptions made in the above derivation (Section 111) and three others that are implicit in 
the use of the geostatistical method are summarized in Table 11. Those of stationarity and isotropy are 
usually acceptable within a land cover. But to check for compliance, transects of AVIRIS spectra can be 
examined for evidence of a spatial trend or a difference between columns and rows (Fig. 2). In the 
AVIRIS data discussed in section V there are gain and offset variations (Fig. 2), and so these data are 
anisotropic. Estimates of the SNR are therefore direction-dependent and either all row or all column tran- 
sects should be used. 
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The assumption of a fixed spatial resolution is met with AVIRIS data but could be a problem if the 
geostatistical method is applied to optical remotely sensed data with a very wide field of view. The 
assumption that pixels in the scene have spatial dependence and are not randomly ordered is also reason- 
able. Caution is needed, however, as the very name "nugget variance" was originally used to describe the 
spatially independent variance in semi-variograms of gold concentration that was due to a random gold 
nugget at one of the prospector's transect points. Clearly, random scene variability, which could be useful 
information, cannot be ruled out as a contributor to the nugget variance but it can be minimized by the 
careful location of transects (Fig. 2). By contrast, the assumption that nugget variance is independent of 
spatially dependent structural variance at the limit of y(h), when h approaches 0, is unreasonable. This 
is because of the need to extrapolate from h = 1 to the limit of y(h), when h approaches 0, using the 
spatially dependent slope. Fortunately the point-spread function of the sensor increases the similarity of 
pixels at small lags and so minimizes the effect of violating this assumption. 

V. THE GEOSTATISTICAL METHOD FOR ESTIMATING THE SNR 
OF AVIRIS DATA 

Application of the geostatistical method ihvolved two stages, first, data selection and preprocessing 
and second, estimation of the SNR for each waveband of AVIRIS data. 

Selection and Preprocessing of AVIRIS Data 

Five AVIRIS data sets were selected (Table 111). They were recorded around solar noon, over a 
wide range of dates and land covers. All data were converted from dlgital numbers to radiance and radio- 
metrically calibrated at JPL [31] and on receipt, any dropped scan lines were replaced with the means of 
radiance values in adjacent lines [32]. The 1987 AVIRIS data contained considerable periodic noise, pro- 
duced by the inadvertent coupling of the image signal with electrical and mechanical signals 1171. A fast 
Fourier transform [33], [34] was used to generate frequency domain images for each scene (Fig. 3) and 
these revealed clear noise spikes [35], [36]. This periodic noise was dominated by frequencies of around 
two pixels per cycle that increased in severity as the season progressed (Fig. 4). The major periodic noise 
frequencies were removed by "notch filtering" in the frequency domain [37], [38] by a method (Table IV) 
similar to that used on AIS data [39]-[41]. By comparison with prefiltered spectra, this removal of major 
periodic noise had no effect on the relative radiometry (Fig. 5 )  and by comparison with prefiltered semi- 
variograms, it reduced the spatially dependent structural variance (C) (Fig. 6). The visual effects of such 
filtering are illustrated in Fig. 3. The success of this preprocessing was attributed to: (i) clarity of the 
noise, especially from 0.68 to 1.27 pm (a result of low gain in the second of the four AVIRIS spectrome- 
ters) and 1.84-2.40 pm (a result of low signal in the fourth of the four AVIRIS spectrometers) [4]; 
(ii) clarity of the major periodic noise spikes in the vertical component of the frequency domain; 
(iii) spectrometer-independence of the major periodic noise frequencies and (iv) relatively homogeneous 
subscenes with little chance of "ringing" (crenulated tonal boundaries) in the filtered images [39]. 

Estimating the SNR for Each Waveband of AVIRIS Data 

To estimate the S N R  for each waveband of AVIRIS data, three transects were first located within 
each land cover (Table V). These transects were long enough to enable the production of a semi- 
variogram with at least 15 lags in the statistically significant first fifth of their length [26]. The mean 
signal and semi-variogram were calculated for each of the 209 wavebands and the nugget variance was 
determined by extrapolating the slope of the semi-variogram to h = 0 (Fig. 1). This extrapolation could 
have been obtained by the use of an "authorized model" [26] for each semi-variogram. However, to 
minimize the need for such intensive intervention, the smallest lag at which the sill occurred in the whole 
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data set was used as a maximum point from which to apply a linear fit to h = 0 (Fig.-1). The results of 
such extrapolation are illustrated for three wavebands in one data set (Fig. 7). The signal and square root 
of the nugget variance were used to derive plots of SNR versus wavelength and signal with a noise 
envelope versus wavelength (Table V, Figs. 8- 12). As was noted in the introduction, noise varies little 
with wavelength but the signal will drop sharply with both an increase in wavelength and atmospheric 
absorption. As a result the first-order forms of the S N R  plots (Figs. 8-12) were signal dependent. The 
spectral zones of very high S N R s  were green/red (0.50-0.70 pm) for water and soil and near-infrared 
(0.70-0.90 pm) for vegetation. The spectral zones of low and very low SNRs were near-infrared and 
middle-infrared wavelengths where the signal was low, either at the longer wavelengths or in atmospheric 
absorption bands (Table VI). These spectral zones of S N R  provide a useful summary of the utility of 
specific AVIRIS wavelengths from the 1987 flight season. Of more importance is the potential use of the 
geostatistical method by individual investigators to plan for the restrictions that random noise places on the 
analysis of AVIRIS data. 

VI. DISCUSSION 

The geostatistical method for estimating the SNR of imagery was proposed and developed in the 
context of AVIRIS data. The utility of the method is potentially far wider, as it is applicable to any 
remotely sensed data that can satisfy its rather modest assumptions (Table 11). These data include, for 
example, most optical remotely sensed imagery regardless of altitude of data collection or sensor design. 
The more general utility of the geostatistical method is to be the topic of future studies. 

VII. CONCLUSION 

A new procedure, which we have called the geostatistical method, was used to estimate the SNR 
of five sets of AVIRIS data. This method was designed around the needs of the AVIRIS investigator and 
has the following advantages: (i) it estimates only noise that is relevant to the investigator, unlike the 
existing laboratory, dark current and image methods, (ii) it requires acceptable assumptions and (iii) is 
easy to apply. Future studies will evaluate the utility of this method to remotely sensed data from broad- 
band sensors. 
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Table I. Existing methods for estimating the S N R  of AVIRIS data showing the level of signal and type of 
noise to be estimated 

I Signal TvDe o f noise Estimated Examples Method 
level Periodic R a n d o m  SNR in for AVIRIS 

Sensor Sensor Intra- Inter- relation data 
noise noise pixel pixel to that 

varia- varia- relevant to 
bility bility investigator 

Laboratory Artificially X X Higher [161, u71 

Dark current Natural X X X Lower ~ 3 1 ,  ~ 9 1  

Image Natural X X X X Lower ~ 1 ,  ~ 3 1  

I high 
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Table II. Assumptions in the use of nugget variance as an estimate of random noise (random sensor noise 
and intrapixel variability) in AVIRIS data 

Assump tion Explanation or reason Comments on assumptions in 
relation to AVIRIS data 

collected in 1987 

Stationarity 

Isotropy 

Fixed spatial 
resolution 

Scene does not 
contain random 
information. 

Nugget variance 
is independent of 
spatially dependent 
structural variance 

Spatial dependence of 
pixels is a function of 
lag and not location. 

Nugget variance is 
independent of transect 
direction. 

Intrapixel variability 
and therefore nugget 
variance is dependent 
upon spatial resolution. 

Random features in scene 
increase nugget variance 
and could be information 
rather than noise. 

Limit of y(h) when h 
approaches 0 has minor 
dependence upon the slope 
of the semi-variogram. 

Generally true within a land 
cover. 

Untrue, due to gain and offset 
variability; therefore use row 
or column transects. 

True. 

Generally true but need to 
check. 

Untrue, but point-spread 
function of sensor ensures 
that y(h) when h approaches 
0 is similar to that at small 
lags and so the effect of this 
violation is minimal. 
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Table 111. AVIRIS data for which the SNR was estimated 

Location Land cover 
of interest 

Date of data 
acquisition 

(1987) 

Time of data 
acquisition 
(start, hr) 

Mountain View, 
CA 

Gainesville, 
FL 

Yuba City, 
CA 

Metolius, 
OR 

Cuprite, 
NE 

Sediment -1 aden 25 June 
water 

Plan tation 
forest 

4 July 

Bare soil 30 July 

Semi-natural 
forest 

1 August 

Bare soil 14 Septemb 

12:40 

11:49 

12:49 

11:14 

r 11:14 

Table IV. Procedure for removing the major periodic noise in AVIRIS data 

1. Select 256 x 256 pixel subscene in one waveband. 

2 .  Use fast Fourier transform to create a frequency domain image; major periodic noise appears as 
a series of spikes, each representing energy concentration at a specific frequency. 

3.  Design a "notch filter." Zeroes represent the location of major periodic noise spikes and ones 
represent the remainder. Multiply by frequency domain image to create a new frequency domain 
image without major periodic noise spikes. 

4. Invert filtered frequency domain image to create spatial domain image with no major period'c noise. 

5. Repeat step 4 on selected wavebands from each spectrometer. Define spectrometer-independent notch 
filter and use to filter all AVIRIS wavebands. 
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Table V. Procedure for estimating the SNR in AVIRIS data 

1. Locate three row transects within a land cover, each transect being 75-100 pixels long to ensure that 
the statistically significant first fifth of the semi-variogram is at least 15 lags. 

2. Calculate the mean signal (2) and semi-variogram for each waveband. 

3. Determine the nugget variance (C,) by extrapolating the slope of y(h) for each waveband. Here the 
extrapolation was based on a linear fit over 8 lags (Fig. 7). 

4. Plot Z/co versus wavelength and Z (with a Co envelope) versus wavelength as two repre- 
sentations of the S N R  (Figs. 8-12). 

Table VI. S N R  zones in AVIRIS data, where NIR refers to near-infrared and MIR refers to middle- 
infrared wavelengths 

Land cover 
Relative 

SNR Water Vegetation Soil 

Very high Greedred 
(0.50-0.70 pm) 

High Blue 
(0.40-0.50 pm) 

MediW NIR (0.70-0.90, 
0.95- 1.10 pm) 

LOW NIR (0.90-0.95 pm) 
MIR (1.15-1.35, 
1.50-1.75, 2.00- 
2.30 pm) 

Very low MIR (1.10-1.15, 
1.35-1.50, 1.75- 
2.00, 2.30-2.40 pm 

NIR (0.95-1.10 pm) 

Greedred 
(0.50-0.70 pm) 
NIR (0.85-0.90 pm) 

Blue (0.40-0.50 pm) 

0.90-0.95 pm) 
NIR (0.70-0.85, 

MIR (1.10-1.35, 
1.50-1.75, 2.00- 
2.30 pm) 

MIR (1.35- 1 S O ,  
1.75-2.00, 2.30- 
2.40 pm) 

Green/red 
(0.50-0.70 pm) 

Blue (0.40- 
0.50 pm) 
NIR (0.95- 1.10 pm) 

NIR (0.85-0.90 pm) 

NIR (0.70-0.85, 
0.90-0.95 pm) 
MIR (1.15-1.35, 
1.50-1.75, 2.00- 
2.30 pm) 

MIR (1.10-1.15, 
1.35- 1.50, 1.75- 
2.00, 2.30-2.40 pm 
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Fig, 1. A generalized semi-variogram. 

Fig. 2. Two 30-pixel transects for a plantation forest, in the AVIRIS data of Gainesville, FL 
(Table HI), recorded (a) along a row and (b) down a column. 
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Fig. 3. The removal of major periodic noise by "notch filtering" in the frequency domain of the 
1.018 pm waveband of AVIRIS data for: (a) sediment-laden water, Mountain View, CA; 
(b) plantation forest, Gainesville, FL; (c) bare soil, Yuba City, CA; (d) semi-natural forest, 
Metolius, OR, and (e) bare soil, Cuprite, NE (Table HI). 
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Fig. 4. The major types of periodic noise observed in five sets of AVIRIS data (Table III). The 
noise characteristics were determined from the location of major periodic noise spikes in the fre- 
quency domain. 
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Fig. 5. The effect on a bare soil spectra of removing the major periodic noise by "notch filtering" 
in the frequency domain. The AVIRIS data are for Cuprite, NE (Table HI). 
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Fig. 6.  The effect on a bare soil semi-variogram of removing the major periodic noise by "notch 
filtering" in the frequency domain. The AVIRIS data are the 1.01 8 pm waveband for Cuprite, NE 
(Table III). 
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Fig. 7. Semi-variograms for three wavebands of AVIRIS data recorded for a plantation forest near 
Gainesville, FL (Table In). 
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Fig. 8. The SNR for sediment-laden water in the AVIRIS data of Mountain View, CA (Table 111): 
(a) the SNR versus wavelength and (b) the signal with noise envelope versus wavelength for three 
image transects. 

18 



0 

Fig. 9. The S N R  for a plantation forest in the AVIRIS data of Gainesville, FL (Table III): (a) the 
S N R  versus wavelength and (b) the signal with noise envelope versus wavelength for three image 
transects. 
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Fig. 10. The SNR for bare soil in the AVIRIS data of Yuba City, CA (Table 111): (a) the SNR 
versus wavelength and (b) the signal with noise envelope versus wavelength for three image 
transects. 
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Fig. 11 .  The S N R  for semi-natural forest in the AVIRIS data of Metolius, OR (Table III): (a) the 
S N R  versus wavelength and (b) the signal with noise envelope versus wavelength for three image 
transects. 
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Fig. 12. The SNR for bare soil in the AVIRIS data of Cuprite, NE (Table 111): (a) the S N R  
versus wavelength and (b) the signal with noise envelope versus wavelength for three image 
transects. 
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